Document Details

Document Type : Article In Journal 
Document Title :
Intelligent Web Objects Prediction Approach in Web Proxy Cache Using Supervised Machine Learning and Feature Selection
الاسلوب الذكي لتوقع صفحات الويب في الذاكرة المخباة للبروكسي باستخدام تعلم الاله الموجهه واختيار الصفات المهمه
 
Subject : Computer Science 
Document Language : English 
Abstract : Web proxy cache is used to enhance the performance of network by keeping popular web objects in cache of proxy server for closer access. Intelligent approaches aim at improving the performance of conventional strategies. Mostly focus was on improving prediction mechanism, to guess the ideal objects that will be revisited in future; cache them and combine the result with the conventional algorithm.This research proposes an improved prediction method using automated method to select the influence features that produce accurate prediction results before combining with conventional algorithm. The method use supervised machine learning based on Naïve Bayes (NB) and Decision Tree (C4.5). It applies wrapper feature selection to specify influence features with optimal subset to improve the predictive power. Additionally two more features are extracted to know user’s interest to make a smart and a wise decision for caching. The results showed that reduction for the number of features has a good impact on reducing computation time. Moreover, optimal subset selection achieves high performance and enhances accuracy. 
ISSN : 2074-8523 
Journal Name : International Journal of Advances in Soft Computing & Its Applications 
Volume : 7 
Issue Number : 3 
Publishing Year : 1436 AH
2015 AD
 
Article Type : Article 
Added Date : Monday, March 7, 2016 

Researchers

Researcher Name (Arabic)Researcher Name (English)Researcher TypeDr GradeEmail
أميره عبدالله البناAlbana, Amira AbdullahInvestigatorMasteramiraalbana909@gmail.com
سيرينا سليمانSuliman, Sarina ResearcherDoctoratesarina@utm.my
وليد علي أحمدAhmed, Waleed AliResearcherDoctoratewaleedalodini@gmail.com

Files

File NameTypeDescription
 38333.pdf pdf 

Back To Researches Page